
J
H
E
P
0
1
(
2
0
0
7
)
0
6
4

Published by Institute of Physics Publishing for SISSA

Received: November 7, 2006

Accepted: December 13, 2006

Published: January 17, 2007

Magic identities for conformal four-point integrals

James M. Drummond,a Johannes Henn,a Vladimir A. Smirnovb and Emery Sokatcheva

aLaboratoire d’Annecy-le-Vieux de Physique Théorique LAPTH∗
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1. Introduction

Four-point correlators in the N = 4 super-Yang-Mills conformal field theory have attracted

considerable attention since the formulation of the AdS/CFT conjecture [1]. They can

provide non-trivial dynamical information about the CFT side of the correspondence, which

can then be compared to its AdS dual. In particular, the correlators of four ‘protected’

stress-tensor multiplets have been extensively studied. It has been found that their form

is more restricted than would follow from just superconformal kinematics. This property,

called ‘partial non-renormalisation’ in [2] is observed in the perturbative one-loop [3] and

two-loop [4] CFT calculations, as well as in their AdS supergravity (or strong coupling)

dual [5]. These explicit results have been analysed through OPE methods [6] and the two-

loop anomalous dimensions of all twist two operators in the theory were found in [7]. In

all these studies conformal four-point integrals have been instrumental.

In a parallel development, on-shell four-gluon planar scattering amplitudes in N =

4 SYM have been investigated in [8] and a remarkable conjecture about their iterative

structure has been made, based on the comparison of one- and two-loop results. The

conjecture was confirmed at three loops in [9]. If true to all orders, this iterative property

may allow the resummation of the perturbative series and may be the manifestation of

some form of integrability of the theory. One of the results of [9] was the large spin

asymptotic value of the anomalous dimension of twist two operators, in agreement with

the conjectured three-loop formula of [10]. The latter also received impressive confirmation

from the integrable model proposed in [11].

Although it may seem that the two problems, that of the correlators of gauge-invariant

composites and that of gluon scattering amplitudes, are unrelated, it is quite significant that

in both studies one deals with the same conformal four-point integrals. Up to two loops,

these are the so-called ‘scalar box’ (or ‘ladder’) integrals.1 At three loops, in addition to

the triple scalar box a new integral named ‘tennis court’ has appeared in [9]. In the context

1The off-shell ladder integrals in four dimensions for an arbitrary number of loops have been evaluated

in [13, 14] and generalised to arbitrary dimensions in [15].
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of the scattering amplitudes these two integrals are put on the massless shell, whereby they

become infrared and collinear divergent. Their pole structure in dimensional regularisation

is quite different, as shown in [9]. In the present paper we prove that the two integrals,

considered off shell, are identical. We first show this by a very simple argument, based

on a ‘turning symmetry’ property of the two-loop scalar box subintegral common for both

three-loop integrals. It should be stressed that our proof requires conformal invariance in

strictly four dimensions, therefore it does not apply to the dimensionally regularised on-

shell version of the integrals. To rule out the possibility of contact terms spoiling the proof

we give an alternative argument which relates the two three-loop integrals to the same

four-loop integral under the action of a differential operator. We then present a simple

graphical rule for constructing identical integrals which is easy to iterate to any number

of loops. In some sense our iteration procedure (or ‘slingshot rule’) resembles the so-called

‘rung rule’ of [8, 9]. Thus, at four loops we produce five apparently different, but in fact

identical integrals obtained by iterating the already established three-loop identity of the

scalar box and the tennis court. We then give an independent confirmation of the latter

by explicitly computing the two integrals using the Mellin–Barnes method.

2. Conformal four-point integrals

We will discuss an infinite class of conformal four-point integrals in four dimensions2, each

of which is essentially described by a function of two variables. We begin with the simplest

example, the one-loop ladder integral,

h(1)(x1, x2, x3, x4) =

∫

d4x5

x2
15x

2
25x

2
35x

2
45

=
1

x2
13x

2
24

Φ(1)(s, t). (2.1)

Here xij = xi − xj and the conformal cross-ratios s and t are

s =
x2

12x
2
34

x2
13x

2
24

, t =
x2

14x
2
23

x2
13x

2
24

. (2.2)

The fact that the integral is characterised by a single function of two variables follows

from its conformal covariance [16]. Indeed, performing a conformal inversion on all points,

xµ
−→

xµ

x2
=⇒ x2

ij −→
x2

ij

x2
i x

2
j

, d4x5 −→
d4x5

x8
5

, (2.3)

we find that the integral transforms covariantly with weight one at each point,

h(1)(x1, x2, x3, x4) −→ x2
1x

2
2x

2
3x

2
4h

(1)(x1, x2, x3, x4). (2.4)

Since rotation and translation invariance are manifest, we conclude that the integral is

given by a conformally covariant combination of propagators multiplied by a function of

the conformally invariant cross-ratios (2.2).

2In this section we consider and prove identities for Euclidean integrals. The corresponding Minkowskian

version of the identities can be obtained through Wick rotation of the integrals. In the Euclidean context

we consider integrals with separated external points, xij 6= 0. This is the Euclidean analogue of the off-shell

regime, x
2

ij 6= 0, for a Minkowskian integral.
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Figure 1: The one-loop ladder integral. Each line represents a propagator with the integration

point given by a solid vertex. The reason for the names ladder and box is clearer in the momentum

representation of the same integral.
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Figure 2: The two-loop ladder integral. The dashed line represents the numerator x2
24.

The function Φ(1)(s, t) has been calculated in [12, 13], where it was also shown that

the same function appears in a three-point integral. The latter can be obtained from the

four-point one by sending one of the points to infinity [16]. We can multiply equation (2.1)

by x2
13, say, and then take the limit x3 −→ ∞. This gives,

h
(1)
3pt(x1, x2, x4) = lim

x3→∞
x2

13h
(1)(x1, x2, x3, x4) =

∫

d4x5

x2
15x

2
25x

2
45

=
1

x2
24

Φ(1)(ŝ, t̂), (2.5)

where the cross-ratios s and t have become ŝ and t̂ in the limit,

s −→ ŝ =
x2

12

x2
24

, t −→ t̂ =
x2

14

x2
24

. (2.6)

Thus the three-point integral contains the same information as the four-point integral,

i.e. the same function of two variables. The reason is that one can use translations and

conformal inversion to take the point x3 to infinity and the function of the cross-ratios is

invariant under these transformations.

The integral (2.1) is the first in an infinite series of conformal integrals, the n-loop

ladder (or scalar box) integrals, which have all been evaluated [14]. In particular the

2-loop ladder integral is given by

h(2)(x1, x2, x3, x4) = x2
24

∫

d4x5d
4x6

x2
15x

2
25x

2
45x

2
56x

2
26x

2
46x

2
36

=
1

x2
13x

2
24

Φ(2)(s, t). (2.7)

The prefactor x2
24 is present to give conformal weight one at each external point.
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Figure 3: The two-loop turning identity obtained from the pairwise point swap, x1 ←→ x2,

x3 ←→ x4.
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Figure 4: Two examples of three-loop conformal four-point integrals, the three-loop ladder and

the ‘tennis-court’.

Again conformal transformations can be used to justify the appearance of the 2-variable

function Φ(2). The r.h.s. of (2.7) is invariant under the pairwise swap x1 ←→ x2, x3 ←→ x4,

hence

h(2)(x2, x1, x4, x3) = h(2)(x1, x2, x3, x4). (2.8)

This symmetry is not immediately evident from the integral. It is its conformal nature

which allows this identification.

At three loops we consider two conformal integrals, the three-loop ladder,

h(3)(x1, x2, x3, x4) = x4
24

∫

d4x5d
4x6d

4x7

x2
15x

2
25x

2
45x

2
56x

2
26x

2
46x

2
67x

2
27x

2
47x

2
37

=
1

x2
13x

2
24

Φ(3)(s, t), (2.9)

and the so-called ‘tennis court’ [9],

g(3)(x1, x2, x3, x4) = x2
24

∫

x2
35 d4x5d

4x6d
4x7

x2
15x

2
25x

2
45x

2
56x

2
57x

2
67x

2
26x

2
47x

2
36x

2
37

=
1

x2
13x

2
24

Ψ(3)(s, t) (2.10)

Notice the presence of the numerator x2
35 in the integrand of the tennis court. It is needed

to balance the conformal weight of the five propagators coming out of point 5.

We will show that the three-loop ladder and the tennis court are in fact the same,

i.e. we will prove Φ(3) = Ψ(3). First we shall present a diagrammatic argument. We

consider the n-loop ladder as being iteratively constructed from the (n− 1)-loop ladder by

integrating against a ‘slingshot’ (the ‘0-loop’ ladder is a product of free propagators). For

– 4 –
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Figure 5: The three-loop ladder expressed as the integral of the two-loop ladder against the

‘slingshot’. The empty vertex is the point x5 which must be identified with the point x5 from the

two-loop ladder sub-integral before being integrated over.
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Figure 6: Diagrammatic representation of the proof of equality of the tennis court and the three-

loop ladder. The identity follows from the turning identity (2.8) for the two-loop subintegral.

example we write the three-loop ladder as

h(3)(x1, x2, x3, x4) = x2
24

∫

d4x5

x2
15x

2
25x

2
45

(

x2
24

∫

d4x6d
4x7

x2
56x

2
26x

2
46x

2
67x

2
27x

2
47x

2
37

)

, (2.11)

where inside the parentheses we recognise the two-loop ladder integral (2.7).

We can then show the equality of the three-loop ladder and the tennis court by using

the turning symmetry (2.8) on the two-loop ladder sub-integral. Then the tennis court

integral (2.10) can be recognised as the turned two-loop ladder integrated against the

slingshot,

h(3)(x1, x2, x3, x4) = x2
24

∫

d4x5

x2
15x

2
25x

2
45

h(2)(x5, x2, x3, x4),

= x2
24

∫

d4x5

x2
15x

2
25x

2
45

h(2)(x2, x5, x4, x3),

= g(3)(x1, x2, x3, x4). (2.12)

This proof can be more easily seen in the diagram (Fig. 6).

In using the turning identity (2.8) we have ignored the possibility of contact terms.

These could, in principle, spoil the derivation of identities like Φ(3) = Ψ(3) as the proof

(2.12) involves turning a subintegral. Contact terms could then generate regular terms

upon doing one further integration. We now give an argument why this cannot happen

for any conformal four-point integral. We again use the example of the 3-loop ladder and

tennis court identity.
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Figure 7: The 2-loop ladder inserted into an H-shaped frame, generating a 4-loop integral.

Consider inserting the n-loop subintegral (the 2-loop ladder in this case) into an H-

shaped frame with a dashed line across the top, as illustrated below. This generates an

(n+2)-loop integral which is conformal with weight 1 at each external point (provided the

subintegral is conformal with weight 1 at each external point).

When inserting the 2-loop ladder in this way the 4-loop integral one obtains is

f (4)(x1, x2, x3, x4) = x2
34

∫

d4x5d
4x6

x2
15x

2
45x

2
56x

2
26x

2
36

x2
35

∫

d4x7d
4x8

x2
67x

2
57x

3
37x

2
78x

2
58x

2
38x

2
48

=
1

x2
13x

2
24

f(s, t). (2.13)

As usual, the second equality follows from conformality.

Now we consider the action of ¤1 on the above integral using

¤
1

x2
= −4π2δ(x). (2.14)

On the integral one obtains

−4π2 x2
34x

2
13

x2
14

∫

d4x6d
4x7d

4x8

x2
26x

2
16x

2
36x

2
67x

2
17x

2
37x

2
78x

2
18x

2
38x

2
48

= −
4π2x2

34

x4
13x

2
14x

2
24

Φ(3)(s, t). (2.15)

On the functional form of (2.13) one uses the chain rule to derive the action of a

differential operator on the function f . In this way we find the differential equation,

x2
23x

2
34

x6
13x

4
24

∆
(2)
st f(s, t) = −

π2x2
34

x4
13x

2
14x

2
24

Φ(3)(s, t). (2.16)

The operator ∆
(2)
st is given explicitly by
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∆
(2)
st = s∂2

s + t∂2
t + (s + t − 1)∂s∂t + 2∂s + 2∂t. (2.17)

Similarly we can act with ¤2 on the 4-loop integral to obtain the following integral,

−4π2 x2
34

x2
23

∫

d4x5d
4x7d

4x8x
2
35

x2
15x

2
25x

2
45x

2
57x

2
58x

2
78x

2
27x

2
48x

2
37x

2
38

= −
4π2x2

34

x2
23x

2
13x

4
24

Ψ(3)(s, t), (2.18)

and the corresponding differential equation,

x2
14x

2
34

x6
24x

4
13

∆
(2)
st f(s, t) = −

π2x2
34

x2
23x

2
13x

4
24

Ψ(3)(s, t). (2.19)

From (2.16,2.19) it follows that Φ(3) = Ψ(3), the point being that one obtains the

same differential operator ∆
(2)
st under the two ¤ operations. The argument has the obvi-

ous generalisation of placing any conformal integral (in any orientation) inside the frame.

This argument indirectly shows that the previous argument (2.12) based on turning the

subintegral cannot suffer from contact term contributions.

The identity we have obtained at three loops is just the first example of an infinite

set of identities which all come from the turning symmetry of subintegrals. We generate

(n + 1)-loop integrals by integrating n-loop integrals against the slingshot in all possible

orientations. The resulting integrals are equal by turning identities of the form (2.8). At

two loops we get just one integral (the two-loop ladder). At three loops we have already

seen two equivalent integrals (ladder and tennis court). At four loops we generate two

equivalent integrals from the three-loop ladder and three equivalent integrals from the

tennis court. Finally, all five four-loop integrals obtained in this way are equivalent by the

three-loop identity for the ladder and tennis court (see Fig. 8).

In general it is more common to give the diagrams in the ‘momentum’ representation

(which has nothing to do with the Fourier transform) where we regard the integrations as

integrals over loop momenta rather than coordinate space vertices. This representation is

neater but the numerators need to be described separately as they do not appear in the

diagrams. To return to the coordinate space integrals one places a vertex inside each loop

and connects them with propagators through each line. We show this in Fig. 9 for the

tennis court integral. The momentum-space version of the four generations of integrals

from Fig. 8 is then given in Fig. 10.

– 7 –
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Figure 8: The integrals in a given row are all equivalent. They generate the integrals in the next

row by being integrated in all possible orientations against the slingshot attached from above. The

ladder series is in the left-most column.

Figure 9: The conversion from the momentum notation to the coordinate space notation. The

pictures represent the same integral after a change of variables.

3. Evaluating off-shell four-point Feynman integrals by Mellin–Barnes

representation

Let us show how the above identity between the off shell triple box and tennis court can

straightforwardly be obtained by means of the method of Mellin–Barnes (MB) representa-
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Figure 10: The momentum notation for our integrals up to four loops. The slingshot translates

into the top box in each diagram, beneath which are the integrals at one loop lower, arranged in

all possible orientations. The ladder series is again in the left-most column.

tion. This method is one of the most powerful methods of evaluating individual Feynman

integrals.3 It is based on the MB representation

1

(X + Y )λ
=

1

Γ(λ)

1

2πi

∫ +i∞

−i∞

Y z

Xλ+z
Γ(λ + z)Γ(−z) dz (3.1)

applied to replace a sum of two terms raised to some power by their products to some

powers.

The first step of the method is the derivation of an appropriate MB representation. It

is very desirable to do this for general powers of the propagators (indices) and irreducible

numerators. On the one hand, this provides crucial checks of a given MB representation

using simple partial cases. (For example, one can shrink either horizontal or vertical lines to

points, i.e. set the corresponding indices to zero, and obtain simple diagrams quite often

3It is especially successful for evaluating four-point Feynman integrals. For massless off-shell four-

point integrals, first results were obtained by means of MB representation in [13, 14]. In the context of

dimensional regularisation, with the space-time dimension d = 4 − 2ε as a regularisation parameter, two

alternative strategies for resolving the structure of singularities in ε were suggested in [17, 18] where first

results on evaluating four-point on-shell massless Feynman integrals were obtained. Then these strategies

were successfully applied to evaluate massless on-shell double [17 – 21] and triple [22, 9] boxes, with results

written in terms of harmonic polylogarithms [23], double boxes with one leg off shell [24] and massive

on-shell double boxes [25, 26] (see also Chapter 5 of [27]).
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Figure 11: Labelled triple box.
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Figure 12: Labelled tennis court.

expressed in terms of gamma functions.) On the other hand, such a general derivation

provides unambiguous prescriptions for choosing integration contours (see details in [27]).

So, we consider the off shell triple box and tennis court labelled as shown in figures 11

and 12, with general powers of the propagators and one irreducible numerator in tennis

court chosen as [(l1 + l3)
2]−a11 , where l1,3 are the momenta flowing through lines 1 and 3

in the same direction.

Experience shows that a minimal number of MB integrations for planar diagrams is

achieved if one introduces MB integrations loop by loop, i.e. one derives a MB repre-

sentation for a one-loop subintegral, inserts it into a higher two-loop integral, etc. This

straightforward strategy provides the following 15-fold MB representations for the dimen-

sionally regularised off-shell triple box and tennis court with general indices:

T1(a1, . . . , a10; s, t, p
2
1, p

2
2, p

2
3, p

2
4; ε) =

(

iπd/2
)3

(−1)a(−s)6−a−3ε

∏

j=2,4,5,6,7,9 Γ(aj)Γ(4 − 2ε − a4,5,6,7)

×
1

(2πi)15

∫ +i∞

−i∞

15
∏

j=1

dzj
(−p2

1)
z12(−p2

2)
z13(−p2

3)
z4,9,14(−p2

4)
z5,10,15(−t)z11

(−s)z4,5,9,10,11,12,13,14,15

×
Γ(a9 + z11,12,13)Γ(a7 + z1,2,3)Γ(2 − ε − a5,6,7 − z1,2,4)Γ(2 − ε − a4,5,7 − z1,3,5)

Γ(a1 − z2)Γ(a3 − z3)Γ(4 − 2ε − a1,2,3 + z1,2,3)

×
Γ(a5 + z1,4,5)Γ(a4,5,6,7 + ε − 2 + z1,2,3,4,5)Γ(z11,14,15 − z6)

Γ(a8 − z7)Γ(a10 − z8)Γ(4 − 2ε − a8,9,10 + z6,7,8)

×Γ(2 − ε − a8,9 + z6,7 − z11,12,14)Γ(2 − a2,3 − ε + z1,3 − z6,8,10)

×Γ(a8,9,10 + ε − 2 + z11,12,13,14,15 − z6,7,8)Γ(2 − ε − a9,10 + z6,8 − z11,13,15)

×Γ(a2 + z6,7,8)Γ(2 − ε − a1,2 + z1,2 − z6,7,9)
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×Γ(z6,9,10 − z1)Γ(a1,2,3 + ε − 2 − z1,2,3 + z6,7,8,9,10)
∏

j=2,3,4,5,7,...,15

Γ(−zj) ; (3.2)

T2(a1, . . . , a11; s, t, p
2
1, p

2
2, p

2
3, p

2
4; ε) =

(

iπd/2
)3

(−1)a(−s)6−a−3ε

∏

j=2,4,5,6,7,9 Γ(aj)Γ(4 − 2ε − a4,5,6,7)

×
1

(2πi)15

∫ +i∞

−i∞

15
∏

j=1

dzj
(−p2

1)
z12(−p2

2)
z13(−p2

3)
z5,10,14(−p2

4)
z15+z8(−t)z11

(−s)z5,8,10,11,12,13,14,15

15
∏

j=2

Γ(−zj)

×
Γ(a9 + z11,12,13)Γ(a7 + z1,2,3)Γ(2 − a5,6,7 − ε − z1,2,4)Γ(2 − a4,5,7 − ε − z1,3,5)

Γ(a1 − z2)Γ(a3 − z3)Γ(4 − 2ε − a1,2,3 + z1,2,3)Γ(a10 − z7)

×
Γ(a5 + z1,4,5)Γ(a4,5,6,7 + ε − 2 + z1,2,3,4,5)Γ(2 − a2,3 − ε + z1,3 − z6,8,10)

Γ(8 − 4ε − a − z5,6,8,10)Γ(a8 − z4,9)Γ(a1,2,3,4,5,6,7,11 + 2ε − 4 + z4,5,6,7,8,9,10)

×Γ(6 − a + a10 − 3ε − z5,6,7,8,10,11,12,14)Γ(a + 3ε − 6 + z5,6,8,10,11,12,13,14,15)

×Γ(a2 + z6,7,8)Γ(2 − ε − a1,2 + z1,2 − z6,7,9)Γ(6 − 3ε − a + a8 − z4,5,6,8,9,10,11,13,15)

×Γ(z6,9,10 − z1)Γ(a1,2,3 + ε − 2 − z1,2,3 + z6,7,8,9,10)

×Γ(a1,2,3,4,5,6,7,11 + 2ε − 4 + z4,5,6,7,8,9,10,11,14,15) . (3.3)

Here a4,5,6,7 = a4 + a5 + a6 + a7, a =
∑

ai, z11,12,13 = z11 + z12 + z13, etc. Moreover, in

contrast to the rest of the paper, the letters s and t denote, in these equations as well

in other equations of this section, the usual Mandelstam variables s = (p1 + p2)
2 and

t = (p1 + p3)
2.

These representation are written for the Feynman integrals in Minkowski space. (This

is rather convenient, in particular this allows one to put some of the legs on-shell.) The

corresponding Euclidean versions are obtained by the replacements −s → s,−t → t,−p2
1 →

p2
1, . . . and by omitting the prefactors (−1)a and i3.

To calculate the triple box we need, i.e. T
(0)
1 = T1(1, . . . , 1) at d = 4, we simply set

all the indices ai to one. We cannot immediately set ε = 0 because there is Γ(−2ε) in the

denominator. The value of the integral is, of course, non-zero, so that some poles in ε arise

due to the integration. To resolve the structure of poles one can apply Czakon’s code [28],

which provides the following value of the integral in the limit ε → 0 after relabelling the

variables by z10 → z2, z14 → z3, z15 → z4, z11 → z5, z12 → z6:

T
(0)
1 =

(

iπ2
)3

(2πi)6

∫ +i∞

−i∞

6
∏

j=1

dzj
(−p2

1)
z6(−p2

2)
−1−z5,6(−p2

3)
−1−z5,6(−p2

4)
z6(−t)z5

(−s)2−z5

×
Γ(1 + z3,4)Γ(1 + z1 − z3,4,5)Γ(z2,3,4,5 − z1)Γ(z4 − z6)

Γ(1 + z4 − z6)Γ(1 + z2,4 − z6)Γ(2 + z1,6 − z2,4)Γ(2 + z3,5,6)

∏

j

Γ(−zj)

×Γ(z2,4 − z6)
2Γ(1 + z1,6 − z2,4)

2Γ(1 + z5,6)Γ(1 + z3,5,6) . (3.4)

To calculate the tennis court we need, i.e. T
(0)
2 = T2(1, . . . , 1,−1) at d = 4, we proceed

like in the previous case. Czakon’s code provides the following integral (after relabelling

z10 → z2, z14 → z3, z15 → z4, z11 → z5, z12 → z6):

T
(0)
2 =

(

iπ2
)3

(2πi)6

∫ +i∞

−i∞

6
∏

j=1

dzj
(−p2

1)
z6(−p2

2)
−1−z5−z6(−p2

3)
−1−z5−z6(−p2

4)
z6(−t)z5

(−s)1−z5

– 11 –
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×
Γ(1 + z3,4)Γ(1 + z1 − z3,4,5)Γ(z2,3,4,5 − z1)Γ(z4 − z6)

Γ(1 + z4 − z6)Γ(1 + z1 − z2,3,5,6)Γ(2 + z3,5,6)Γ(2 + z2,3,5,6)

∏

j

Γ(−zj)

×Γ(z1 − z2,3,5,6)
2Γ(1 + z5,6)Γ(1 + z3,5,6)Γ(1 + z2,3,5,6)

2 . (3.5)

Now the simple change of variables z2 → −z2 + z1 − z3 − z4 − z5 in (3.5) leads to an

expression identical to (3.4) up to a factor of s and we obtain the identity T
(0)
2 = sT

(0)
1 ,

which corresponds to the identity Φ(3) = Ψ(3) of the previous section. (Observe that the

factor s here appears because the general integrals (3.2) and (3.3) are defined without the

appropriate prefactors present in the definitions of Φ(3) and Ψ(3).

Let us stress that one can also apply the technique of MB representation in a similar

way in various situations where a given four-point off-shell Feynman integral cannot be

reduced to ladder integrals.
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